Foxo3a expression and acetylation regulate cancer cell growth and sensitivity to cisplatin

Foxo3a 表达和乙酰化调节癌细胞生长和对顺铂的敏感性

阅读:4
作者:Masaki Shiota, Akira Yokomizo, Eiji Kashiwagi, Yasuhiro Tada, Junichi Inokuchi, Katsunori Tatsugami, Kentaro Kuroiwa, Takeshi Uchiumi, Narihito Seki, Seiji Naito

Abstract

Many advanced cancers receive cisplatin-based chemotherapy. However, cisplatin resistance is a major obstacle for cancer chemotherapy. Foxo3a is a member of the Foxo transcription factor family, which modulates the expression of genes involved in DNA damage repair, apoptosis, and other cellular processes. In this study, we found that cisplatin-resistant cells were more sensitive to the anticancer agent mithramycin than their parental cells, and had a decreased level of Foxo3a expression. Foxo3a knockdown increased cell proliferation and resistance to cisplatin. On the other hand, mithramycin stimulated Foxo3a expression through reactive oxygen species production and sensitized cells to cisplatin, which was abolished by Foxo3a knockdown, while the acetylation status of Foxo3a was decreased in response to cisplatin treatment and was lower in cisplatin-resistant cells. Knockdown of Foxo3a-associated acetyltransferase p300 promoted cancer-cell growth and cisplatin resistance. In addition, non-acetylation-mimicking Foxo3a overexpression decreased cancer cell growth and sensitized cells to cisplatin less than wild-type Foxo3a overexpression. The current work may contribute to the evaluation of the therapeutic potential of inducing the Foxo3a pathway and acetylating the Foxo3a transcription factor, and lead to the reevaluation of cancer treatments based on mithramycin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。