Enhancement of IFNγ Production by Distinct Commensals Ameliorates Salmonella-Induced Disease

不同共生菌增强 IFNγ 生成可改善沙门氏菌引起的疾病

阅读:9
作者:Sophie Thiemann, Nathiana Smit, Urmi Roy, Till Robin Lesker, Eric J C Gálvez, Julia Helmecke, Marijana Basic, Andre Bleich, Andrew L Goodman, Ulrich Kalinke, Richard A Flavell, Marc Erhardt, Till Strowig

Abstract

The microbiota contributes to colonization resistance against invading pathogens by competing for metabolites, producing inhibitory substances, and priming protective immune responses. However, the specific commensal bacteria that promote host resistance and immune-mediated protection remain largely elusive. Using isogenic mouse lines with distinct microbiota profiles, we demonstrate that severity of disease induced by enteric Salmonella Typhimurium infection is strongly modulated by microbiota composition in individual lines. Transferring a restricted community of cultivable intestinal commensals from protected into susceptible mice decreases S. Typhimurium tissue colonization and consequently disease severity. This reduced tissue colonization, along with ameliorated weight loss and prolonged survival, depends on microbiota-enhanced IFNγ production, as IFNγ-deficient mice do not exhibit protective effects. Innate cells and CD4+ T cells increase in number and show high levels of IFNγ after transfer of the commensal community. Thus, distinct microbiota members prevent intestinal Salmonella infection by enhancing antibacterial IFNγ responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。