Synthesis and Profiling of a Novel Potent Selective Inhibitor of CHK1 Kinase Possessing Unusual N-trifluoromethylpyrazole Pharmacophore Resistant to Metabolic N-dealkylation

具有不寻常的 N-三氟甲基吡唑药效团且对代谢 N-脱烷基化具有抗性的新型强效 CHK1 激酶选择性抑制剂的合成与分析

阅读:6
作者:Pounami Samadder, Tereza Suchánková, Ondřej Hylse, Prashant Khirsariya, Fedor Nikulenkov, Stanislav Drápela, Nicol Straková, Petr Vaňhara, Kateřina Vašíčková, Hana Kolářová, Lucia Binó, Miroslava Bittová, Petra Ovesná, Peter Kollár, Radek Fedr, Milan Ešner, Josef Jaroš, Aleš Hampl, Lumír Krejčí, Kam

Abstract

Checkpoint-mediated dependency of tumor cells can be deployed to selectively kill them without substantial toxicity to normal cells. Specifically, loss of CHK1, a serine threonine kinase involved in the surveillance of the G2-M checkpoint in the presence of replication stress inflicted by DNA-damaging drugs, has been reported to dramatically influence the viability of tumor cells. CHK1's pivotal role in maintaining genomic stability offers attractive opportunity for increasing the selectivity, effectivity, and reduced toxicity of chemotherapy. Some recently identified CHK1 inhibitors entered clinical trials in combination with DNA antimetabolites. Herein, we report synthesis and profiling of MU380, a nontrivial analogue of clinically profiled compound SCH900776 possessing the highly unusual N-trifluoromethylpyrazole motif, which was envisioned not to undergo metabolic oxidative dealkylation and thereby provide greater robustness to the compound. MU380 is a selective and potent inhibitor of CHK1 which sensitizes a variety of tumor cell lines to hydroxyurea or gemcitabine up to 10 times. MU380 shows extended inhibitory effects in cells, and unlike SCH900776, does not undergo in vivo N-dealkylation to the significantly less selective metabolite. Compared with SCH900776, MU380 in combination with GEM causes higher accumulation of DNA damage in tumor cells and subsequent enhanced cell death, and is more efficacious in the A2780 xenograft mouse model. Overall, MU380 represents a novel state-of-the-art CHK1 inhibitor with high potency, selectivity, and improved metabolic robustness to oxidative N-dealkylation. Mol Cancer Ther; 16(9); 1831-42. ©2017 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。