Intermittent hypoxia aggravates non-alcoholic fatty liver disease via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway

间歇性缺氧通过 RIPK3 依赖的坏死凋亡调节的 Nrf2/NFκB 信号通路加重非酒精性脂肪性肝病

阅读:8
作者:Huojun Zhang, Ling Zhou, Yuhao Zhou, Lingling Wang, Weiling Jiang, Lu Liu, Shuang Yue, Pengdou Zheng, Huiguo Liu

Aims

Hepatocyte necroptosis is a critical event in the progression of non-alcoholic fatty liver disease (NAFLD). Obstructive sleep apnea hypopnea syndrome (OSAHS) and chronic intermittent hypoxia (CIH) may be linked with the pathogenesis and the severity of NAFLD. However, the potential role of necroptosis in OSAHS-associated NAFLD has not been evaluated. The present study investigated whether IH could affect NAFLD progression through promoting receptor-interacting protein kinase-3 (RIPK3)-dependent necroptosis, oxidative stress, and inflammatory response, and further elucidated the underlying molecular mechanisms. Main

Methods

LO2 cells were treated with palmitic acid (PA) and subjected to IH, and necroptosis, oxidative stress, and inflammation were assessed. The high-fat choline-deficient (HFCD)-fed mouse model was also used to assess the effects of CIH in experimental NAFLD in vivo. Key findings: In this study, we found that RIPK3-mediated necroptosis was activated both in the PA plus IH-treated LO2 cells and liver of HFCD/CIH mice, and which could trigger oxidative stress and inflammatory response by decreasing Nrf2 and increasing p-P65. RIPK3 downregulation significantly reduced hepatocyte necroptosis, and ameliorated oxidative stress and inflammation through modulating Nrf2/NFκB pathway in vitro and vivo. Similarly, pretreatment with TBHQ, an activator of Nrf2, effectively blocked the generation of oxidative productions and inflammatory cytokines. In addition, RIPK3 inhibitor GSK-872 or TBHQ administration obviously alleviated hepatic injury, including histology, transaminase activities, and triglyceride contents in vivo. Significance: IH aggravates NAFLD via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway, and which should be considered as a potential therapeutic strategy for the treatment of NAFLD with OSASH.

Significance

IH aggravates NAFLD via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway, and which should be considered as a potential therapeutic strategy for the treatment of NAFLD with OSASH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。