Cellular phenotype transformation occurs during thoracic aortic aneurysm development

细胞表型转变发生在胸主动脉瘤发展过程中

阅读:8
作者:Jeffrey A Jones, Juozas A Zavadzkas, Eileen I Chang, Nina Sheats, Christine Koval, Robert E Stroud, Francis G Spinale, John S Ikonomidis

Conclusions

This study demonstrated for the first time that isolated primary aortic fibroblasts from thoracic aortic aneurysm-induced mice possess a unique and stable gene expression profile, and when challenged with biological stimuli, induce a transcriptional response that is different from normal aortic fibroblasts. Together, these data suggest that aortic fibroblasts undergo a stable phenotypic change during thoracic aortic aneurysm development, which may drive the enhancement of extracellular matrix proteolysis in thoracic aortic aneurysm progression.

Methods

Primary murine aortic fibroblasts were isolated from normal and thoracic aortic aneurysm-induced aortas (4 weeks post induction with 0.5 mol/L CaCl(2) 15 minutes) by the outgrowth method. Normal and thoracic aortic aneurysm cultures were examined using a focused polymerase chain reaction array to determine fibroblast-specific changes in gene expression in the absence and presence of biological stimulation (endothelin-1, phorbol-12-myristate-13-acetate, angiotensin-II). The relative expression of 38 genes, normalized to 4 housekeeping genes, was determined, and genes displaying a minimum 2-fold increase/decrease or genes with significantly different normalized cycle threshold values were considered to have altered expression.

Objective

Thoracic aortic aneurysms result from dysregulated remodeling of the vascular extracellular matrix, which may occur as a result of altered resident cellular function. The present study tested the hypothesis that aortic fibroblasts undergo a stable change in cellular phenotype during thoracic aortic aneurysm formation.

Results

At steady state, thoracic aortic aneurysm fibroblasts revealed elevated expression of several matrix metalloproteinases (Mmp2, Mmp11, Mmp14), collagen genes/elastin (Col1a1, Col1a2, Col3a1, Eln), and other matrix proteins, as well as decreased expression of Mmp3, Timp3, and Ltbp1. Moreover, gene expression profiles in thoracic aortic aneurysm fibroblasts were different than normal fibroblasts after equivalent biological stimuli. Conclusions: This study demonstrated for the first time that isolated primary aortic fibroblasts from thoracic aortic aneurysm-induced mice possess a unique and stable gene expression profile, and when challenged with biological stimuli, induce a transcriptional response that is different from normal aortic fibroblasts. Together, these data suggest that aortic fibroblasts undergo a stable phenotypic change during thoracic aortic aneurysm development, which may drive the enhancement of extracellular matrix proteolysis in thoracic aortic aneurysm progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。