Physical Cues in the Microenvironment Regulate Stemness-Dependent Homing of Breast Cancer Cells

微环境中的物理线索调节乳腺癌细胞的干性依赖性归巢

阅读:5
作者:Hsueh-Yao Chu, Yin-Ju Chen, Chun-Jieh Hsu, Yang-Wei Liu, Jeng-Fong Chiou, Long-Sheng Lu, Fan-Gang Tseng

Abstract

Tissue-specific microenvironmental factors contribute to the targeting preferences of metastatic cancers. However, the physical attributes of the premetastatic microenvironment are not yet fully characterized. In this research, we develop a transwell-based alginate hydrogel (TAH) model to study how permeability, stiffness, and roughness of a hanging alginate hydrogel regulate breast cancer cell homing. In this model, a layer of physically characterized alginate hydrogel is formed at the bottom of a transwell insert, which is placed into a matching culture well with an adherent monolayer of breast cancer cells. We found that breast cancer cells dissociate from the monolayer and home to the TAH for continual growth. The process is facilitated by the presence of rich serum in the upper chamber, the increased stiffness of the gel, as well as its surface roughness. This model is able to support the homing ability of MCF-7 and MDA-MB-231 cells drifting across the vertical distance in the culture medium. Cells homing to the TAH display stemness phenotype morphologically and biochemically. Taken together, these findings suggest that permeability, stiffness, and roughness are important physical factors to regulate breast cancer homing to a premetastatic microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。