Natural variation in macrophage polarization and function impact pneumocyte senescence and susceptibility to fibrosis

巨噬细胞极化和功能的自然变化影响肺细胞衰老和对纤维化的易感性

阅读:5
作者:Eun Joo Chung, Seokjoo Kwon, Uma Shankavaram, Ayla O White, Shaoli Das, Deborah E Citrin

Abstract

Radiation-induced pulmonary fibrosis (RIPF), a late adverse event of radiation therapy, is characterized by infiltration of inflammatory cells, progressive loss of alveolar structure, secondary to the loss of pneumocytes and accumulation of collagenous extracellular matrix, and senescence of alveolar stem cells. Differential susceptibility to lung injury from radiation and other toxic insults across mouse strains is well described but poorly understood. The accumulation of alternatively activated macrophages (M2) has previously been implicated in the progression of lung fibrosis. Using fibrosis prone strain (C57L), a fibrosis-resistant strain (C3H/HeN), and a strain with intermediate susceptibility (C57BL6/J), we demonstrate that the accumulation of M2 macrophages correlates with the manifestation of fibrosis. A comparison of primary macrophages derived from each strain identified phenotypic and functional differences, including differential expression of NADPH Oxidase 2 and production of superoxide in response to M2 polarization and activation. Further, the sensitivity of primary AECII to senescence after coculture with M2 macrophages was strain dependent and correlated to observations of sensitivity to fibrosis and senescence in vivo. Taken together, these data support that the relative susceptibility of different strains to RIPF is closely related to distinct senescence responses induced through pulmonary M2 macrophages after thoracic irradiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。