SMN haploinsufficiency promotes ischemia/ reperfusion-induced AKI-to-CKD transition by endoplasmic reticulum stress activation

SMN 单倍体不足通过内质网应激激活促进缺血/再灌注诱发的 AKI 向 CKD 转变

阅读:4
作者:Xiaoqian Qian, Jingyang Li, Shuyang Bian, Dongdong Zhu, Qin Guo, Fan Bian, Gengru Jiang

Abstract

Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected syndromes that represent a global public health challenge. Here, we identified a specific role of survival of motor neuron (SMN) in ischemia/reperfusion (I/R)-induced kidney injury and progression of CKD. SMN was an essential protein in all cell type and was reported to play important roles in multiple fundamental cellular homeostatic pathways. However, the function of SMN in experimental models of I/R-induced kidney fibrosis has not extensively studied. Genetic ablation of SMN or small interfering RNA-base knockdown of SMN expression aggravated the tubular injury and interstitial fibrosis. Administration of scAAV9-CB-SMN or epithelial cell overexpression of SMN reduced I/R-induced kidney dysfunction and attenuated AKI-to-CKD transition, indicating that SMN is vital for the preservation and recovery of tubular phenotype. Our data showed that the endoplasmic reticulum stress (ERS) induced by I/R was persistent and became progressively more severe in the kidney without SMN. On the contrary, overexpression of SMN prevented against I/R-induced ERS and tubular cell damage. In summary, our data collectively substantiate a critical role of SMN in regulating the ERS activation and phenotype of AKI-to-CKD transition that may contribute to renal pathology during injury and repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。