The Mutual Inhibition of FoxO1 and SREBP-1c Regulated the Progression of Hepatoblastoma by Regulating Fatty Acid Metabolism

FoxO1与SREBP-1c相互抑制通过调节脂肪酸代谢调控肝母细胞瘤进展

阅读:4
作者:Yu Hu, Hongyan Zai, Wei Jiang, Zhenglin Ou, Yuanbing Yao, Qin Zhu

Background

Hepatoblastoma (HB) is the most common liver malignancy in pediatrics, but the treatment for this disease is minimal. This study is aimed at exploring the effect of FoxO1 and SREBP-1c on HB and their mechanism.

Conclusion

FoxO1 and SREBP-1c inhibited each other in HB, leading to the increase of intracellular fatty acid metabolism, and ultimately facilitated the development of HB.

Methods

FoxO1, SREBP-1c, FASN, ACLY, ACC, and MAGL expressions in tissue samples were detected by RT-qPCR and WB. IHC was utilized to measure FASN content. Overexpression and knockdown of FoxO1 and sSREBP-1c were performed on Huh-6 cells. Cell proliferation, migration, and invasion were examined by CCK8, scratch, and transwell assay. ELISA was performed to test the ATP, FAO, NEFA, and Acetyl-CoA contents. ChIP was used to detect the interaction between SREBP-1c protein and the FoxO1 gene. In vivo tumorigenesis was conducted on mice. The morphology of tumor tissue sections was observed by HE staining.

Results

FoxO1 expression was downregulated in HB tissue, while the expressions of SREBP-1c, FASN, ACLY, ACC, and MAGL were upregulated. In Huh-6 cells and mouse tumor tissues, FoxO1 knockdown resulted in increased cell proliferation, migration, and invasion and active fatty acid metabolism. On the contrary, after the knockdown of SREBP-1c, cell proliferation, migration, and invasion were weakened, and fatty acid metabolism was significantly reduced. SREBP-1c interacted with the promoter of the FoxO1 gene. When FoxO1 was knocked down, the tumor tissue was more closely packed. After the knockdown of the SREBP-1c gene, the structure of tumor cells was deformed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。