Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation

miRNA-126 修饰的 ADSC 中的外泌体可通过改善神经发生和抑制小胶质细胞活化来促进大鼠中风后的功能恢复

阅读:5
作者:Wujun Geng, Hongli Tang, Shan Luo, Ya Lv, Dongdong Liang, Xianhui Kang, Wandong Hong

Abstract

Although adipose derived stem cells (ADSCs) exert their therapeutic potential in ischemic stroke, the migration of ADSCs in injured area is not apparently observed after intravenous administration. ADSCs are an important source of exosomes which hold great promise as an endogenous drug delivery system for the treatment of cerebral ischemia given their ability to cross the blood-brain barrier. Here we investigated whether ADSCs-derived exosomes mediated miRNAs transfer and thus promoted neurological recovery after stroke. We first proved that miR-126 levels were reduced in patients' plasma with acute ischemic stroke and in rat plasma and brain tissue after ischemia. To test the effect of exosomal miR-126, we employed overexpression and knock-down technologies to up-regulate or inhibit miR-126 level in ADSCs and thus acquired miR-126+ exosomes and miR-126- exosomes, respectively. Compared with control, systemic administration of ADSCs-derived exosomes significantly increased the expression of von Willebrand factor (an endothelia cell marker) and doublecortin (a neuroblasts marker) and improved functional recovery in stroke rats. ADSCs-derived exosomes also resulted in a decrease of neuron cell death and an increase of cell proliferation compared with control. Importantly, these outcomes were further enhanced with miR-126+ exosomes treatment and were significantly decreased with miR-126- exosomes treatment, compared to naïve exosomes treatment. MiR-126+ exosomes also inhibited microglial activation and the expression of inflammatory factors in vivo and in vitro. Our results suggest that intravenous administration of miR-126+ exosomes post stroke improves functional recovery, enhances neurogenesis, inhibits neuroinflammation, and represents a novel treatment for stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。