Dichloroacetate as a metabolic modulator of heart mitochondrial proteome under conditions of reduced oxygen utilization

二氯乙酸在氧利用率降低的情况下作为心脏线粒体蛋白质组的代谢调节剂

阅读:7
作者:Natalia Andelova, Iveta Waczulikova, Lukas Kunstek, Ivan Talian, Tanya Ravingerova, Magdalena Jasova, Simon Suty, Miroslav Ferko

Abstract

Myocardial compensatory mechanisms stimulated by reduced oxygen utilization caused by streptozotocin-induced diabetes mellitus (DM) and treated with dichloroacetate (DCA) are presumably associated with the regulation of mitochondria. We aimed to promote the understanding of key signaling pathways and identify effectors involved in signal transduction. Proteomic analysis and fluorescence spectroscopy measurements revealed significantly decreased membrane potential and upregulated protein amine oxidase [flavin-containing] A (AOFA) in DM mitochondria, indicative of oxidative damage. DCA in diabetic animals (DM + DCA) downregulated AOFA, increased membrane potential, and stimulated thioredoxin-dependent peroxide reductase, a protein with antioxidant function. Furthermore, the DM condition was associated with mitochondrial resistance to calcium overload through mitochondrial permeability transition pores (mPTPs) regulation, despite an increased protein level of voltage-dependent anion-selective protein (VDAC1). In contrast, DM + DCA influenced ROS levels and downregulated VDAC1 and VDAC3 when compared to DM alone. The diabetic myocardium showed an identical pattern of mPTP protein interactions as in the control group, but the interactions were attenuated. Characterization of the combined effect of DM + DCA is a novel finding showing that DCA acted as an effector of VDAC protein interactions, calcium uptake regulation, and ROS production. Overall, DM and DCA did not exhibit an additive effect, but an individual cardioprotective pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。