The role of spinal cord tractography in detecting lesions following selective bladder afferent and efferent fibers injury: A novel method for induction of neurogenic lower urinary tract dysfunction in rabbit

脊髓纤维束成像在选择性膀胱传入和传出纤维损伤后检测病变中的作用:一种诱导兔神经源性下尿路功能障碍的新方法

阅读:7
作者:Shaghayegh Sadeghmousavi, Alireza Soltani Khaboushan, Fahimeh Jafarnezhad-Ansariha, Reza Nejad-Gashti, Maryam Farsi, Reza Esmaeil-Pour, Maryam Alijani, Masoumeh Majidi Zolbin, Hassan Niknejad, Abdol-Mohammad Kajbafzadeh

Conclusion

In the present study, we investigated the auxiliary role of tractography in detecting the spinal cord lesions in the novel established rabbit model of NLUTD. The introduced method of NLUTD induction was without the leg's neurological deficit, easily applicable, low-cost, and was accompanied by minimal surgical preparation and a satisfactory survival rate in comparison with other SCI animal models.

Methods

An animal model of NLUTD was induced through cauterization of the spinal cord at the level T12-L1 in 12 rabbits. Then rabbits were assessed via DTI, urodynamic studies (UDS), voiding cystourethrogram (VCUG), and pathology assessments using antineurofilament 200 (NF200) antibody, anti-S100, anti-Smooth Muscle Actin, anti-Myogenin, and anti-MyoD1.

Objective

Neurogenic lower urinary tract dysfunction (NLUTD), a challenging disorder, is defined by lack of bladder control due to the abnormalities in neural pathways and can be classified based on the location of lesions within the nervous system, thus investigating the neural pathways can help us to know the site of the lesion and specify the class of the NLUTD. Diffusion Tensor Imaging (DTI) tractography, a noninvasive advanced imaging method, is capable of detecting central nervous system pathologies, even if routine magnetic resonance imaging shows no abnormality. Accordingly, tractography is an ideal technique to evaluate patients with NLUTD and visualize the pathology site within the spine. This study aimed to introduce a novel method of spinal cord injury (SCI) to establish NLUTD in the rabbit and to investigate the potential of tractography in tracing neural tracts of the spinal cord in an induced NLUTD animal model. Materials and

Results

The tractography visualized lesions within spinal cord fibers. DTI parameters including fractional anisotropy (FA) value and tract density were significantly decreased (FA: p-value = 0.01, Tract density: p-value = 0.05) after injury. The mean diffusivity (MD) was insignificantly increased compared to before the injury. Also, the results of UDS and pathology assessments corroborated that applying SCI and the establishment of the NLUTD model was completely successful.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。