25-OH-PPD inhibits hypertrophy on diabetic cardiomyopathy via the PI3k/Akt/GSK-3β signaling pathway

25-OH-PPD通过PI3k/Akt/GSK-3β信号通路抑制糖尿病心肌肥大

阅读:10
作者:Xinyu Liu, Feiran Song, Chunna Liu, Yi Zhang

Abstract

The present study investigated the inhibitory effects and the associated mechanism of the compound 25-OH-PPD (PPD) on cardiac hypertrophy, fibrosis and inflammation. The signaling pathways associated with diabetic mellitus cardiomyopathy (DMCM) were investigated using a rat model. DMCM Sprague-Dawley rats were induced by injection of streptozotocin. The animals were divided into 5 groups as follows: Normal group (NG group), diabetic group, PPD treatment group, PPD/LY294002 group (inhibitor of PI3K/Akt) and PPD/LiCl group [inhibitor of glycogen synthase kinase (GSK) 3β]. The studies were carried out during the 12 weeks following induction of diabetes and the levels of plasma brain natriuretic peptide (BNP), creatine phosphokinase isoenzyme (CK-MB) were measured. In addition, the volume of myocardial collagen fraction (CVF) was tested. The expression levels of the inflammatory cytokines, including transforming growth factor beta 1 (TGF-β1), connective tissue growth factor (CTGF), cell adhesion molecules α-smooth muscle actin (α-SMA) and vascular adhesion molecule 1 (VCAM-1) and associated signaling proteins (Akt, GSK-3β) were measured by biochemical analyses. The levels of BNP and CK-MB, the volume of CVF, the expression levels of TGF-β1, CTGF, α-SMA and VCAM-1 in the diabetic group were higher compared with those of the normal control group (P<0.05). Conversely, the levels of these molecules were significantly decreased in the PPD treatment groups (P<0.05). The aforementioned effects were partially eliminated in the PPD/LY294002 and PPD/LiCl groups. In addition, PPD treatment significantly increased the expression levels of p-Akt and decreased the levels of phosphorylated GSK-3β compared with those of the DMCM group (P<0.05). The data demonstrated that the protective effects of 25-OH-PPD against DMCM may be attributed to the PI3k/Akt/GSK-3β signaling pathway, via the suppression of the α-SMA/VCAM axis and the downregulation of TGF-β1 and CTGF expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。