Enhanced Depolymerization of Actin Filaments by ADF/Cofilin and Monomer Funneling by Capping Protein Cooperate to Accelerate Barbed-End Growth

ADF/Cofilin 增强肌动蛋白丝的解聚作用和封端蛋白的单体漏斗作用共同加速倒刺末端的生长

阅读:7
作者:Shashank Shekhar, Marie-France Carlier

Abstract

A living cell's ability to assemble actin filaments in intracellular motile processes is directly dependent on the availability of polymerizable actin monomers, which feed polarized filament growth [1, 2]. Continued generation of the monomer pool by filament disassembly is therefore crucial. Disassemblers like actin depolymerizing factor (ADF)/cofilin and filament cappers like capping protein (CP) are essential agonists of motility [3-8], but the exact molecular mechanisms by which they accelerate actin polymerization at the leading edge and filament turnover has been debated for over two decades [9-12]. Whereas filament fragmentation by ADF/cofilin has long been demonstrated by total internal reflection fluorescence (TIRF) [13, 14], filament depolymerization was only inferred from bulk solution assays [15]. Using microfluidics-assisted TIRF microscopy, we provide the first direct visual evidence of ADF's simultaneous severing and rapid depolymerization of individual filaments. Using a conceptually novel assay to directly visualize ADF's effect on a population of pre-assembled filaments, we demonstrate how ADF's enhanced pointed-end depolymerization causes an increase in polymerizable actin monomers, thus promoting faster barbed-end growth. We further reveal that ADF-enhanced depolymerization synergizes with CP's long-predicted "monomer funneling" [16] and leads to skyrocketing of filament growth rates, close to estimated lamellipodial rates. The "funneling model" hypothesized, on thermodynamic grounds, that at high enough extent of capping, the few non-capped filaments transiently grow much faster [15], an effect proposed to be very important for motility. We provide the first direct microscopic evidence of monomer funneling at the scale of individual filaments. These results significantly enhance our understanding of the turnover of cellular actin networks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。