Evaluation of Venous Stenosis Angioplasty in a Murine Arteriovenous Fistula Model

小鼠动静脉瘘模型中静脉狭窄血管成形术的评估

阅读:14
作者:Chuanqi Cai, Binxia Yang, Sreenivasulu Kilari, Yiqing Li, Chenglei Zhao, Amit Sharma, Sanjay Misra

Conclusions

A clinically relevant model of PTA of venous stenosis in mice was created. PTA-treated vessels had increased lumen vessel area and WSS. The alterations in tissue markers of vascular remodeling, tissue hypoxia, proliferation, and cell death may be implications for future design of drug and device development.

Methods

Thirteen C57BL/6J male mice, 6-8 weeks old, underwent partial nephrectomy to create chronic kidney disease. Twenty-eight days later, an AVF was created from the right external jugular vein to the left carotid artery. Fourteen days later, an angioplasty or sham procedure was performed, and the mice were sacrificed 14 days later for histologic evaluation to identify the cells contributing to the vascular remodeling (α-SMA, FSP-1, CD31, and CD68), proliferation (Ki-67), cell death (TUNEL), and hypoxia staining (HIF-1α). Histomorphometric analysis was performed to assess lumen area, neointima+media area, and cellular density. Ultrasound was performed weekly after creation of the AVF.

Purpose

To develop a clinically relevant model of percutaneous transluminal angioplasty (PTA) of venous stenosis in mice with arteriovenous fistula (AVF); to test the hypothesis that there is increased wall shear stress (WSS) after PTA; and to histologically characterize the vessels. Materials and

Results

Venous stenosis occurred 14 days after the creation of an AVF. PTA-treated vessels had significantly higher WSS; average peak systolic velocity, with increased lumen vessel area; and decreased neointima + media area compared to sham controls. There was a significant decrease in the staining of smooth muscle cells, fibroblasts, macrophages, HIF-1α, proliferation, and apoptosis and an increase in CD31-(+) cells. Conclusions: A clinically relevant model of PTA of venous stenosis in mice was created. PTA-treated vessels had increased lumen vessel area and WSS. The alterations in tissue markers of vascular remodeling, tissue hypoxia, proliferation, and cell death may be implications for future design of drug and device development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。