Mutational and gene expression analysis of mtrDEF, omcA and mtrCAB during arsenate and iron reduction in Shewanella sp. ANA-3

希瓦氏菌 ANA-3 在砷和铁还原过程中的 mtrDEF、omcA 和 mtrCAB 突变和基因表达分析

阅读:8
作者:Carolina Reyes, Julie N Murphy, Chad W Saltikov

Abstract

Arsenate respiration and Fe(III) reduction are important processes that influence the fate and transport of arsenic in the environment. The goal of this study was to investigate the impact of arsenate on Fe(III) reduction using arsenate and Fe(III) reduction deficient mutants of Shewanella sp. strain ANA-3. Ferrihydrite reduction in the absence of arsenate was similar for an arsenate reduction mutant (arrA and arsC deletion strain of ANA-3) compared with wild-type ANA-3. However, the presence of arsenate adsorbed onto ferrihydrite impeded Fe(III) reduction for the arsenate reduction mutant but not in the wild-type. In an Fe(III) reduction mutant (mtrDEF, omcA, mtrCAB null mutant of ANA-3), arsenate was reduced similarly to wild-type ANA-3 indicating the Fe(III) reduction pathway is not required for ferrihydrite-associated arsenate reduction. Expression analysis of the mtr/omc gene cluster of ANA-3 showed that omcA and mtrCAB were expressed under soluble Fe(III), ferrihydrite and arsenate growth conditions and not in aerobically grown cells. Expression of arrA was greater with ferrihydrite pre-adsorbed with arsenate relative to ferrihydrite only. Lastly, arrA and mtrA were simultaneously induced in cells shifted to anaerobic conditions and exposed to soluble Fe(III) and arsenate. These observations suggest that, unlike Fe(III), arsenate can co-induce operons (arr and mtr) implicated in arsenic mobilization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。