Deficiency of lysyl hydroxylase 2 in mice causes systemic endoplasmic reticulum stress leading to early embryonic lethality

小鼠赖氨酰羟化酶2缺乏引起全身内质网应激,导致早期胚胎死亡

阅读:5
作者:Atsushi Kasamatsu, Katsuhiro Uzawa, Fumihiko Hayashi, Akihiro Kita, Yasuhiko Okubo, Tomoaki Saito, Yasushi Kimura, Isao Miyamoto, Noritoshi Oka, Masashi Shiiba, Chizuru Ito, Kiyotaka Toshimori, Takashi Miki, Mitsuo Yamauchi, Hideki Tanzawa

Abstract

Lysyl hydroxylase 2 (LH2) is an endoplasmic reticulum (ER)-resident enzyme that catalyzes the hydroxylation of lysine residues in the telopeptides of fibrillar collagens. This is a critical modification to determine the fate of collagen cross-linking pathway that contributes to the stability of collagen fibrils. Studies have demonstrated that the aberrant LH2 function causes various diseases including osteogenesis imperfecta, fibrosis, and cancer metastasis. However, surprisingly, a LH2-deficient animal model has not been reported. In the current study, to better understand the function of LH2, we generated LH2 gene knockout mice by CRISPR/Cas9 technology. LH2 deficiency was confirmed by genotyping polymerase chain reaction (PCR), reverse transcriptase-PCR, and immunohistochemical analyses. Homozygous LH2 knockout (LH2-/-) embryos failed to develop normally and died at early embryonic stage E10.5 with abnormal common ventricle in a heart, i.e., an insufficient wall, a thin ventricular wall, and loosely packed cells. In the LH2-/- mice, the ER stress-responsive genes, ATF4 and CHOP were significantly up-regulated leading to increased levels of Bax and cleaved caspase-3. These data indicate that LH2 plays an essential role in cardiac development through an ER stress-mediated apoptosis pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。