Ontogeny of stromal organizer cells during lymph node development

淋巴结发育过程中基质组织细胞的个体发育

阅读:5
作者:Cécile Bénézech, Andrea White, Emma Mader, Karine Serre, Sonia Parnell, Klaus Pfeffer, Carl F Ware, Graham Anderson, Jorge H Caamaño

Abstract

The development of secondary lymphoid organs, such as lymph nodes (LNs), in the embryo results from the reciprocal action between lymphoid tissue inducer (LTi) cells and stromal cells. However, the initial events inducing LN anlagen formation before the LTi stromal cells cross-talk interactions take place are not fully elucidated. In this study, we show that the inguinal LN anlagen in mouse embryos developed from mesenchymal cells surrounding the lymph sacs, spherical structures of endothelial cells that bud from veins. Using inguinal and mesenteric LNs (mLNs), we provide evidence supporting a two-step maturation model for stromal cells: first, ICAM-1(-)VCAM-1(-) mesenchymal precursor cells become ICAM-1(int)VCAM-1(int) cells, in a process independent of LTi cells and lymphotoxin beta receptor (LTbetaR) signaling. The second step involves the maturation of ICAM-1(int)VCAM-1(int) cells to ICAM-1(high)VCAM-1(high) mucosal addressin cell adhesion molecule-1(+) organizer cells and depends on both LTi cells and LTbetaR. Addition of alphaLTbetaR agonist to LN organ cultures was sufficient to induce ICAM-1(int)VCAM-1(int) cells to mature. In LtbetaR(-/-) embryos, both inguinal and mLN stromal cells showed a block at the ICAM-1(int)VCAM-1(int) stage, and, contrary to inguinal LNs, mLNs persist longer and contained LTi cells, which correlated with the sustained gene expression of Il-7, Cxcl13, and, to a lesser degree, Ccl21. Taken together, these results highlight the importance of the signals and cellular interactions that induce the maturation of stromal cells and ultimately lead to the formation of lymphoid tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。