The RIF1-PP1 Axis Controls Abscission Timing in Human Cells

RIF1-PP1 轴控制人类细胞脱落时间

阅读:9
作者:Rahul Bhowmick, Roshan Singh Thakur, Andrés Bueno Venegas, Ying Liu, Jakob Nilsson, Marin Barisic, Ian D Hickson

Abstract

Abscission is the final step of cell division when the cytokinetic furrow ingresses completely, leading to midbody formation and plasma membrane fission [1]. In human cells, the Aurora-B-driven abscission checkpoint delays cytokinesis until any residual chromatin spanning the midbody is removed [2-5]. If this does not occur efficiently, uneven segregation of daughter genomes can occur. The mechanism by which the abscission checkpoint becomes satisfied to permit cytokinesis is poorly defined. Here, we identify RIF1 and its binding partner, protein phosphatase 1 (PP1), as being critical for regulation of abscission timing in human cells. We show that RIF1 promotes cytokinesis through recruitment of PP1 to the midbody, which then counteracts Aurora B kinase activity, leading to dephosphorylation of a regulator of abscission timing, CHMP4C [6-10]. Although RIF1 binds to unresolved DNA bridges that persist into telophase [11], we show that this cytokinetic function of the RIF1-PP1 axis is not limited to instances where cell division is perturbed by the presence of bridges. Nevertheless, we show that altering the balance of the opposing Aurora B kinase and PP1 phosphatase activities makes cells unresponsive to DNA bridges and sensitizes cells to agents that induce bridge formation. Our data define a new mechanism for regulation of abscission timing and emphasize how antagonism between kinases and phosphatases is a widespread mechanism for determining the timing of mitotic transactions. Because cancer cells experiencing oncogene-induced replication stress generate excessive mitotic DNA bridging [12], targeting this new regulatory pathway could be a promising therapeutic strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。