Inhaled nitric oxide prevents 3-nitrotyrosine formation in the lungs of neonatal mice exposed to >95% oxygen

吸入一氧化氮可防止暴露于 >95% 氧气的新生小鼠肺部形成 3-硝基酪氨酸

阅读:8
作者:Michael R Stenger, Melissa J Rose, Mandar S Joshi, Lynette K Rogers, Louis G Chicoine, John Anthony Bauer, Leif D Nelin

Abstract

Inhaled nitric oxide is being evaluated as a preventative therapy for patients at risk for bronchopulmonary dysplasia (BPD). Nitric oxide (NO), in the presence of superoxide, forms peroxynitrite, which reacts with tyrosine residues on proteins to form 3-nitrotyrosine (3-NT). However, NO can also act as an antioxidant and was recently found to improve the oxidative balance in preterm infants. Thus, we tested the hypothesis that the addition of a therapeutically relevant concentration (10 ppm) of NO to a hyperoxic exposure would lead to decreased 3-NT formation in the lung. FVB mouse pups were exposed to either room air (21% O(2)) or >95% O(2) with or without 10 ppm NO within 24 h of birth. In the first set of studies, body weights and survival were monitored for 7 days, and exposure to >95% O(2) resulted in impaired weight gain and near 100% mortality by 7 days. However, the mortality occurred earlier in pups exposed to >95% O(2) + NO than in pups exposed to >95% O(2) alone. In a second set of studies, lungs were harvested at 72 h. Immunohistochemistry of the lungs at 72 h revealed that the addition of NO decreased alveolar, bronchial, and vascular 3-NT staining in pups exposed to both room air and hyperoxia. The lung nitrite levels were higher in animals exposed to >95% oxygen + NO than in animals exposed to >95% oxygen alone. The protein levels of myeloperoxidase, monocyte chemotactic protein-1, and intracellular adhesion molecule-1 were assessed after 72 h of exposure and found to be greatest in the lungs of pups exposed to >95% O(2). This hyperoxia-induced protein expression was significantly attenuated by the addition of 10 ppm NO. We propose that in the presence of >95% O(2), peroxynitrite formation results in protein nitration; however, adding excess NO to the >95% O(2) exposure prevents 3-NT formation by NO reacting with peroxynitrite to produce nitrite and NO(2). We speculate that the decreased protein nitration observed with the addition of NO may be a potential mechanism limiting hyperoxic lung injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。