Mesenchymal stem cells-derived extracellular vesicle-incorporated H19 attenuates cardiac remodeling in rats with heart failure

间充质干细胞来源的细胞外囊泡结合 H19 减轻心力衰竭大鼠的心脏重塑

阅读:4
作者:Wei Jiao, Jie Hao, Jin-Ming Liu, Wei-Nian Gao, Jia-Jia Zhao, Yong-Jun Li

Abstract

Cardiac remodeling is manifested by hypertrophy and apoptosis of cardiomyocytes, resulting in the progression of cardiovascular diseases. Long noncoding RNAs (lncRNAs) serve as modifiers of cardiac remodeling. In this study, we aimed to explore the molecular mechanism of H19 shuttled by mesenchymal stem cells (MSC)-derived extracellular vesicles (EV) in cardiac remodeling upon heart failure (HF). Using the GEO database, H19, microRNA (miR)-29b-3p, and CDC42 were screened out as differentially expressed biomolecules in HF. H19 and CDC42 were elevated, and miR-29b-3p was decreased after MSC-EV treatment in rats subjected to ligation of the coronary artery. MSC-EV alleviated myocardial injury in rats with HF. H19 downregulation exacerbated myocardial injury, while miR-29b-3p inhibitor alleviated myocardial injury. By contrast, CDC42 downregulation aggravated the myocardial injury again. PI3K/AKT pathway was activated by MSC-EV. These findings provide insights into how H19 shuttled by EV mitigates cardiac remodeling through a competitive endogenous RNA network regarding miR-29b-3p and CDC42.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。