Conclusions
Retinal ischemia-reperfusion alters expression of mitogen-activated protein kinases, particularly ERK1/2, in the neuroretina and retinal arteries. The development of pharmacological treatment targeting these intracellular transduction pathways may prevent injury to the eye following retinal circulatory failure.
Methods
Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. The
Purpose
The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion.
Results
Pyknotic cell nuclei, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, and glial fibrillary acidic protein mRNA expression were increased in ischemia, suggesting injury. Phosphorylated ERK1/2 protein levels were increased in the neuroretina following ischemia, while mRNA levels were unaltered. p38 protein and mRNA levels were not affected by ischemia. Immunofluorescence staining for phosphorylated p38 was especially intense in the retinal blood vessels, while only weak in the neuroretina. Phosphorylated JNK protein and mRNA were slightly decreased in ischemia. Phosphorylated c-jun protein and mRNA levels were higher in the neuroretina after ischemia-reperfusion. Conclusions: Retinal ischemia-reperfusion alters expression of mitogen-activated protein kinases, particularly ERK1/2, in the neuroretina and retinal arteries. The development of pharmacological treatment targeting these intracellular transduction pathways may prevent injury to the eye following retinal circulatory failure.
