Palmitic acid-induced autophagy increases reactive oxygen species via the Ca2+/PKCα/NOX4 pathway and impairs endothelial function in human umbilical vein endothelial cells

棕榈酸诱导的自噬通过 Ca2+/PKCα/NOX4 通路增加活性氧并损害人脐静脉内皮细胞的内皮功能

阅读:5
作者:Pan Chen, Hengdao Liu, Hong Xiang, Jianda Zhou, Zhengpeng Zeng, Ruifang Chen, Shaoli Zhao, Jie Xiao, Zhihao Shu, Shuhua Chen, Hongwei Lu

Abstract

It is well known that the lipotoxic mechanism of palmitic acid (PA), a main constituent of triglyceride, is dependent on reactive oxygen species (ROS). Recently, it has also been reported that PA is an autophagy inducer. However, the causal association and underlying mechanism of induced autophagy and ROS in PA toxicity remain unclear. The present study demonstrates for the first time that PA-induced autophagy enhances ROS generation via activating the calcium ion/protein kinase Cα/nicotinamide adenine dinucleotide phosphate oxidase 4 (Ca2+/PKCα/NOX4) pathway in human umbilical vein endothelial cells (HUVECs). It was revealed that PA treatment resulted in a significant increase in ROS generation and autophagic activity, leading to endothelial dysfunction as indicated by downregulated nitric oxide synthesis, decreased capillary-like structure formation and damaged cell repair capability. Furthermore, PA effectively activated the Ca2+/PKCα/NOX4 pathway, which is indicative of upregulated cytosolic Ca2+ levels, activated PKCα and increased NOX4 protein expression. 3-Methyladenine was then used to inhibit autophagy, which significantly reduced PA-induced ROS generation and blocked the Ca2+/PKCα/NOX4 pathway. The endothelial dysfunction caused by PA was ameliorated by downregulating ROS generation using a NOX4 inhibitor. In conclusion, PA-induced autophagy contributes to endothelial dysfunction by increasing oxidative stress via the Ca2+/PKCα/NOX4 pathway in HUVECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。