Electrophysiological characteristics of identified kidney-related neurons in adult rat spinal cord slices

成年大鼠脊髓切片中肾脏相关神经元的电生理特征

阅读:6
作者:Andrei V Derbenev, Hanad Duale, Alexander G Rabchevsky, Bret N Smith

Abstract

Whole-cell patch-clamp recordings were made from kidney-related neurons in the intermediolateral cell column (IML) in horizontal slices of thoracolumbar spinal cord from adult rats. Kidney-related neurons were identified in vitro subsequent to inoculation of the kidney with a fluorescent, retrograde, transynaptic pseudorabies viral label (i.e., PRV-152). Kidney-related neurons detected in the IML expressed choline acetyltransferase, characteristic of spinal preganglionic motor neurons. Their mean resting potential was -51+/-4 mV and input resistance was 448+/-39 MOmega. Both spontaneous inhibitory and excitatory post-synaptic currents (i.e., sIPSCs and sEPSCs) were observed in all neurons. The mean frequency for sEPSCs (3.1+/-1 Hz) was approximately 2.5 times that for sIPSCs (1.4+/-0.3 Hz). Application of the glycine and GABA(A) receptor-linked Cl(-) channel blocker, picrotoxin (100 microM) blocked sIPSCs, while the ionotropic glutamate receptor antagonist, kynurenic acid (1 mM) blocked all sEPSCs, indicating they were mediated by GABA/glycine and glutamate receptors, respectively. Thus, using PRV-152 labeling allowed whole-cell patch-clamp recording of neurons in the adult spinal cord, which were kidney-related. Excitatory glutamatergic input dominated synaptic responses in these cells, the membrane characteristics of which resembled those of immature IML neurons. Combined PRV-152 pre-labeling and whole-cell patch-clamp recordings may allow more effective analysis of synaptic plasticity seen in adult models of injury or chronic disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。