Hyponatremia elicits gene expression changes driving osteoclast differentiation and functions

低钠血症引起基因表达变化,驱动破骨细胞分化和功能

阅读:9
作者:Julianna Barsony, Qin Xu, Joseph G Verbalis

Abstract

Growing evidence indicates that chronic hyponatremia represents a significant risk for bone loss, osteoporosis, and fractures in our aging population. Our prior studies on a rat model of the syndrome of inappropriate antidiuretic hormone secretion indicated that chronic hyponatremia causes osteoporosis by increasing osteoclastic bone resorption, thereby liberating stored sodium from bone. Moreover, studies in RAW264.7 pre-osteoclastic cells showed increased osteoclast formation and resorptive activity in response to low extracellular fluid sodium ion concentration (low [Na+]). These studies implicated a direct stimulatory effect of low [Na+] rather than the low osmolality on cultured osteoclastic cells. In the present cellular studies, we explored gene expression changes triggered by low [Na+] using RNA sequencing and gene ontology analysis. Results were confirmed by mouse whole genome microarray, and quantitative RT-PCR. Findings confirmed gene expression changes supporting osteoclast growth and differentiation through stimulation of receptor activator of nuclear factor kappa-B ligand (RANKL), and PI3K/Akt pathways, and revealed additional pathways. New findings on low [Na+]-induced upregulation of lysosomal genes, mitochondrial energy production, MMP-9 expression, and osteoclast motility have supported the significance of osteoclast transcriptomic responses. Functional assays demonstrated that RANL and low [Na+] independently enhance osteoclast functions. Understanding the molecular mechanisms of hyponatremia-induced osteoporosis provides the basis for future studies identifying sodium-sensing mechanisms in osteoclasts, and potentially other bone cells, and developing strategies for treatment of bone fragility in the vulnerable aging population most affected by both chronic hyponatremia and osteoporosis. ISSUE SECTIONS: Signaling Pathways; Parathyroid, Bone, and Mineral Metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。