Bio-Physical Properties of Acetylated Chitosan/Poly(ɛ-Caprolactone) Composites for Three-Dimensional Printing Material Applications

乙酰化壳聚糖/聚(ε-己内酯)复合材料的生物物理特性及其在三维打印材料中的应用

阅读:8
作者:Jin Ik Lim

Abstract

For three-dimensional (3D) printing material applications in tissue engineering, acetylated chitosan (AC)/poly(ɛ-caprolactone) (PCL) composites were prepared by the melt mixing method using the acetylation of chitosan with PCL. The physiochemical properties of the AC/PCL composites were examined by measuring the water contact angles, dispersity of AC on the cross-section using scanning electron microscopy, and temperature stability. In addition, mechanical properties such as tensile strength and bending stress recovery were measured to determine the elasticity of the composite films. The fibroblast cell line NIH-3T3 was used to test the relative cell affinities based on the AC content and cell viability on AC/PCL at various temperatures. There was no difference between the melting points and tensile strengths of the AC/PCL composites and pure PCL. Overall, the AC/PCL composites showed high initial cell adhesion after 4 h of cell culture and increased cell proliferation compared to those of PCL composites used as a control. Based on these tests, an AC of 10.7 wt% was determined to be the optimal composition for the AC/PCL composite. Thus, these composites can be used in various 3D printing material applications in tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。