Homeostatic regulation of the aryl hydrocarbon receptor-cytochrome P450 1a axis by Scutellaria baicalensis-Coptis chinensis herb pair and its main constituents

黄芩-黄连药材对及其主要成分对芳烃受体-细胞色素 P450 1a 轴的稳态调节

阅读:5
作者:Mengmeng Song, Xianjie Sheng, Jianrong Zhang, Xinru Li, Qianyun Dai, Yan Chen, An Kang

Aim of the study

This study aimed to systematically investigate the regulatory effect of SB-CC and its main constitutes on the AHR-CYP1A axis in vitro and in vivo. Materials and

Conclusions

These results suggested that SB-CC exerted dual regulatory effect on the AHR-CYP1A axis by increasing CYP1A expression but simultaneously inhibiting CYP1A activity, which may contribute to a tight modulation of AHR signaling for homeostatic control.

Methods

The livers of mice treated with SB-CC extract were subjected to RNA-sequencing (RNA-seq). The key target genes related to drug metabolism were screened, and the differential expression genes (DEGs) were validated by qRT-PCR, Western blot, and enzyme activity assay. Luciferase reporter gene, qRT-PCR, and Western blot assays were used to determine whether SB-CC and their main constituents could activate AHR and regulate CYP1A expression in HepG2 cells. The effect of SB-CC on the pharmacokinetics of phenacetin, a CYP1A substrate, were further observed in mice to test the net effect of SB-CC on CYP1A functions. The potential CYP1A inhibitors in SB-CC were screened and their inhibitory mechanisms were also studied using human liver microsomes.

Results

AHR and drug metabolism system, especially CYP1A1 and CYP1A2, were strongly affected in the liver of SB-CC-treated mice. These results were further validated by the findings that SB-CC increased CYP1A's mRNA, protein expression and activity in mouse liver. In HepG2 cells, SB, CC, baicalin, baicalein, chrysin, oroxylin A, berberine, coptisine and epiberberine increased CYP1A1 mRNA expression in an AHR-dependent way. Interestingly, SB-CC treatment for 14 days only slightly increased the systemic exposure of paracetamol in mice. In the CYP1A inhibition assay, SB, CC, baicalin, baicalein, wogonoside, wogonin, chrysin, oroxylin A, scutellarein, columbamine, coptisine, palmatine, epiberberine, and berberrubine inhibited CYP1A activity in different degree. Conclusions: These results suggested that SB-CC exerted dual regulatory effect on the AHR-CYP1A axis by increasing CYP1A expression but simultaneously inhibiting CYP1A activity, which may contribute to a tight modulation of AHR signaling for homeostatic control.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。