Usage of celery root exosome as an immune suppressant; Lipidomic characterization of apium graveolens originated exosomes and its suppressive effect on PMA/ionomycin mediated CD4+ T lymphocyte activation

芹菜根外泌体作为免疫抑制剂的用途;芹菜根外泌体的脂质组学表征及其对 PMA/离子霉素介导的 CD4+ T 淋巴细胞活化的抑制作用

阅读:6
作者:Pakize Neslihan Taşlı

Abstract

Diseases such as autoimmune, cancer, neurodegenerative diseases or obesity have a serious impact on the lives of patients all rise from a common point; the immune system. Various in vitro and in vivo studies on regulating the immune system have been made to correct these diseases. As one of the key effector cells of the immune system, T lymphocytes are the focus of many of these studies. In this study, exosomes isolated from a known anti-inflammatory plant, celery, were used to suppress the inflammatory response of T lymphocytes. Celery-derived exosomes (C-Exo) were isolated using an aqueous two-phase isolation method. The size distribution, morphology, particle concentration, and GC-FAME-based lipidomic analysis were determined for the isolated C-Exo. T lymphocytes were stimulated using Phorbol 12-myristate 13-acetate (PMA)/ionomycin, and treated with various doses of C-Exo. T lymphocyte responses were measured using qPCR and capillary Western blots. According to the results, C-Exo suppressed T lymphocytes in a dose-dependent manner in in vitro conditions. These findings show the potential of C-Exo as a therapeutic agent for immune disorders. PRACTICAL APPLICATION: Excessive immune response in the body adversely affects the treatment mechanism and process of many diseases such as autoimmune disorders, neurodegenerative diseases and GDHV. In this preliminary study, the role of extracellular vesicles obtained from celery roots in suppressing this high immune response was investigated. The suppressive effect of celery exosome was observed by creating an immune response in T cells and PBMC cells, which play a leading role in the immune response. The role of these vesicles in immune suppression, obtained from the root part of the celery plant and characterized, was determined by measuring both mRNA, intracellular protein and extracellular cytokine levels. Celery exosome suppressed activated T lymphocyte cells and PBMC cells in a dose-dependent manner. These vesicles, which can be used as an edible, can be used in many areas as immunosuppressants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。