Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells

糖基化缺陷型 CHO 细胞中脂联寡糖的分析及代谢工程

阅读:5
作者:Meredith B Jones, Noboru Tomiya, Michael J Betenbaugh, Sharon S Krag

Abstract

Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man(5)GlcNAc(2)-P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man(9)GlcNAc(2)-P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc(3)Man(9)GlcNAc(2)-P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man(5)GlcNAc(2)-PP-Dol through Glc(1)Man(9)GlcNAc(2)-PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc(3)Man(9)GlcNAc(2)-P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。