Synthesis and Reactivity Studies of a [Cp*Rh] Complex Supported by a Methylene-Bridged Hybrid Phosphine-Imine Ligand

亚甲基桥联杂化膦亚胺配体支持的 [Cp*Rh] 复合物的合成及反应性研究

阅读:6
作者:Julie A Hopkins, Davide Lionetti, Victor W Day, James D Blakemore

Abstract

[Cp*Rh] complexes (Cp* = η 5-pentamethylcyclopentadienyl) supported by bidentate chelating ligands are useful in studies of redox chemistry and catalysis, but little information is available for derivatives bearing "hybrid" [P,N] chelates. Here, the preparation, structural characterization, and chemical and electrochemical properties of a [Cp*Rh] complex bearing the κ2-[P,N]-2-[(diphenylphosphino)methyl]pyridine ligand (PN) are reported. Cyclic voltammetry data reveal that [Cp*Rh(PN)Cl]PF6 (1) undergoes a chemically reversible, net two-electron reduction at -1.28 V vs. ferrocenium/ferrocene, resulting in generation of a rhodium(I) complex (3) that is stable on the timescale of the voltammetry. However, 1H and 31P{1H} NMR studies reveal that chemical reduction of 1 generates a mixture of products over a 1 h timescale; this mixture forms as a result of deprotonation of the methylene group of 1 by 3 followed by further reactivity. The analogous complex [Cp*Rh(PQN)Cl]PF6 (2; PQN = κ2-[P,N]-8-(diphenylphosphino)quinoline) does not undergo self-deprotonation or further reactivity upon two-electron reduction, confirming the reactivity of the acidic backbone methylene C-H bonds in the PN complexes. Comparison of the electrochemical properties 1 and 2 also shows that the extended conjugated system of PQN contributes to an additional ligand-centered redox event for 2 that is absent for 1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。