Plasma-polymerized pericyte patches improve healing of murine wounds through increased angiogenesis and reduced inflammation

血浆聚合周细胞贴片通过增加血管生成和减少炎症改善小鼠伤口愈合

阅读:5
作者:Hannah M Thomas, Parinaz Ahangar, Robert Fitridge, Giles T S Kirby, Stuart J Mills, Allison J Cowin

Abstract

Pericytes have the potential to be developed as a cell therapy for the treatment of wounds; however, the efficacy of any cell therapy relies on the successful delivery of intact and functioning cells. Here, the effect of delivering pericytes on wound repair was assessed alongside the development of a surface-functionalized pericyte patch. Plasma polymerization (PP) was used to functionalize the surface of silicone patches with heptylamine (HA) or acrylic acid (AA) monomers. Human pericytes were subsequently delivered to murine excisional wounds by intradermal injection or using the pericyte-laden patches and the comparative effects on wound healing, inflammation and revascularization determined. The AA surface provided the superior transfer of the cells to de-epidermized dermis. Excisional murine wounds treated either with pericytes injected directly into the wound or with the pericyte-laden AA patches showed improved healing with decreased neutrophil infiltration and reduced numbers of macrophages in the wounds. Pericyte delivery also enhanced angiogenesis through a mechanism independent of VEGF signalling. Pericytes, when delivered to wounds, improved healing responses by dampening inflammation and promoting angiogenesis. Delivery of pericytes using PP-AA-functionalized patches was equally as effective as direct injection of pericytes into wounds. Pericyte-functionalized dressings may therefore be a clinically relevant approach for the treatment of wounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。