Gamma Interferon and Interleukin-17A Differentially Influence the Response of Human Macrophages and Neutrophils to Pseudomonas aeruginosa Infection

干扰素γ和白细胞介素-17A对人类巨噬细胞和中性粒细胞对铜绿假单胞菌感染的反应有不同的影响

阅读:5
作者:Sirina Muntaka, Yasir Almuhanna, Darryl Jackson, Sonali Singh, Afrakoma Afryie-Asante, Miguel Cámara, Luisa Martínez-Pomares

Abstract

Macrophages are important orchestrators of inflammation during bacterial infection, acting as both effector cells and regulators of neutrophil recruitment and life span. Differently activated macrophage populations with distinct inflammatory and microbicidal potentials have been described. Our previous work unveiled a positive and a negative correlation between levels of gamma interferon (IFN-γ) and interleukin-17A (IL-17A), respectively, and lung function in cystic fibrosis, particularly in patients chronically infected with Pseudomonas aeruginosa This study sought to define key parameters in human antibacterial immunity under Th1- and Th17-dominated inflammatory conditions; the final aim was to identify unique characteristics that could be fine-tuned therapeutically to minimize tissue damage while maximizing bacterial clearance. Toward this aim, neutrophils were incorporated into cultures of macrophages treated with IFN-γ or IL-17A and infected with P. aeruginosa The intent of this design was to model (i) initiation of inflammation by infected macrophages and (ii) delayed arrival of neutrophils and their exposure to macrophage-derived cytokines. Under these conditions, IFN-γ decreased bacterial killing and promoted the production of monocyte chemoattractant protein 1 (MCP-1). In contrast, IL-17A promoted bacterial killing but did not affect MCP-1 production. The level of secretion of the pyrogen IL-1β was significantly lower in the presence of IFN-γ than in the presence of IL-17A and correlated with levels of the IL1B transcript in infected macrophages. These findings support the validity of this model to investigate human antibacterial immunity. Based on these observations, the protective and damaging roles of IFN-γ and IL-17A, respectively, during P. aeruginosa infection could be caused by their contrasting effects on IL-1β and MCP-1 production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。