ADP-heptose is a newly identified pathogen-associated molecular pattern of Shigella flexneri

ADP-庚糖是新发现的福氏志贺氏菌病原体相关分子模式

阅读:5
作者:Diego García-Weber, Anne-Sophie Dangeard, Johan Cornil, Linda Thai, Héloïse Rytter, Alla Zamyatina, Laurence A Mulard, Cécile Arrieumerlou

Abstract

During an infection, the detection of pathogens is mediated through the interactions between pathogen-associated molecular patterns (PAMPs) and pathogen recognition receptors. β-Heptose 1,7-bisphosphate (βHBP), an intermediate of the lipopolysaccharide (LPS) biosynthesis pathway, was recently identified as a bacterial PAMP. It was reported that βHBP sensing leads to oligomerization of TIFA proteins, a mechanism controlling NF-κB activation and pro-inflammatory gene expression. Here, we compare the ability of chemically synthesized βHBP and Shigella flexneri lysate to induce TIFA oligomerization in epithelial cells. We find that, unlike bacterial lysate, βHBP fails to initiate rapid TIFA oligomerization. It only induces delayed signaling, suggesting that βHBP must be processed intracellularly to trigger inflammation. Gene deletion and complementation analysis of the LPS biosynthesis pathway revealed that ADP-heptose is the bacterial metabolite responsible for rapid TIFA oligomerization. ADP-heptose sensing occurs down to 10-10 M. During S. flexneri infection, it results in cytokine production, a process dependent on the kinase ALPK1. Altogether, our results rule out a major role of βHBP in S. flexneri infection and identify ADP-heptose as a new bacterial PAMP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。