Suppression of a core metabolic enzyme dihydrolipoamide dehydrogenase (dld) protects against amyloid beta toxicity in C. elegans model of Alzheimer's disease

抑制核心代谢酶二氢硫辛酰胺脱氢酶 (dld) 可防止阿尔茨海默病秀丽隐杆线虫模型中的淀粉样β蛋白毒性

阅读:6
作者:Waqar Ahmad, Paul R Ebert

Abstract

A decrease in energy metabolism is associated with Alzheimer's disease (AD), but it is not known whether the observed decrease exacerbates or protects against the disease. The importance of energy metabolism in AD is reinforced by the observation that variants of dihydrolipoamide dehydrogenase (DLD), is genetically linked to late-onset AD. To determine whether DLD is a suitable therapeutic target, we suppressed the dld-1 gene in Caenorhabditis elegans that express human Aβ peptide in either muscles or neurons. Suppression of the dld-1 gene resulted in significant restoration of vitality and function that had been degraded by Aβ pathology. This included protection of neurons and muscles cells. The observed decrease in proteotoxicity was associated with a decrease in the formation of toxic oligomers rather than a decrease in the abundance of the Aβ peptide. The mitochondrial uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), which like dld-1 gene expression inhibits ATP synthesis, had no significant effect on Aβ toxicity. Proteomics data analysis revealed that beneficial effects after dld-1 suppression could be due to change in energy metabolism and activation of the pathways associated with proteasomal degradation, improved cell signaling and longevity. Thus, some features unique to dld-1 gene suppression are responsible for the therapeutic benefit. By direct genetic intervention, we have shown that acute inhibition of dld-1 gene function may be therapeutically beneficial. This result supports the hypothesis that lowering energy metabolism protects against Aβ pathogenicity and that DLD warrants further investigation as a therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。