Role and Mechanism of Maresin-1 in Acute Lung Injury Induced by Trauma-Hemorrhagic Shock

Maresin-1在创伤失血性休克致急性肺损伤中的作用及机制

阅读:4
作者:Huayi Ma, Song Mo, Qushen Yi, Junhua Lai, Huan Liu, Zhanying Shi

Abstract

BACKGROUND It is reported that trauma hemorrhagic shock (THS) could resulted in organ injury and is related to a high mortality rate. Maresin-1 (MaR1), a derived medium through biosynthesis, is involved in inflammatory responses. However, the mechanism of MaR1 against acute lung injury needs to be further understood. This report aimed to explore whether MaR1 had a protective effect on lung injury. MATERIAL AND METHODS We constructed a THS-induced acute lung damage rat model and then treated the rats with MaR1. We determined Evan's blue dye (EBD) lung permeability, lung permeability index, wet/dry (W/D) weight ratio, nitric oxide (NO) concentration and inducible nitric oxide synthase (iNOS) expression in lung tissue samples. The inflammation-related cytokines levels in the bronchoalveolar lavage fluid (BALF) and serum of rats were determined by enzyme-linked immunosorbent assay (ELISA). Finally, the TLR4/p38MAPK/NF-kappaB pathway was analyzed by quantitative real-time polymerase chain reaction and western blot assay. RESULTS The increased EBD ratio, lung permeability index and W/D weight ratio, NO concentration and iNOS levels were suppressed by MaR1 treatment. THS-induced over-production of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) in BALF and serum was suppressed by MaR1. Besides, the TLR4/p38MAPK/NF-kappaB pathway activation in THS-induced rats were inhibited by MaR1 treatment. CONCLUSIONS Our study showed that MaR1 could effectively alleviated THS-induced lung injury via inhibiting the excitation of the TLR4/p38MAPK/NF-kappaB pathway in THS-induced rats, suggesting that MaR1 might be a novel agent for lung damage treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。