Distinct Effects of Heparin and Interleukin-4 Functionalization on Macrophage Polarization and In Situ Arterial Tissue Regeneration Using Resorbable Supramolecular Vascular Grafts in Rats

肝素和白细胞介素 4 功能化对大鼠巨噬细胞极化和可吸收超分子血管移植物原位动脉组织再生的不同影响

阅读:12
作者:Valentina Bonito, Suzanne E Koch, Merle M Krebber, Daniel A Carvajal-Berrio, Julia Marzi, Renee Duijvelshoff, Emily B Lurier, Serena Buscone, Sylvia Dekker, Simone M J de Jong, Tristan Mes, Koen R D Vaessen, Eva M Brauchle, Anton W Bosman, Katja Schenke-Layland, Marianne C Verhaar, Patricia Y W Dank

Abstract

Two of the greatest challenges for successful application of small-diameter in situ tissue-engineered vascular grafts are 1) preventing thrombus formation and 2) harnessing the inflammatory response to the graft to guide functional tissue regeneration. This study evaluates the in vivo performance of electrospun resorbable elastomeric vascular grafts, dual-functionalized with anti-thrombogenic heparin (hep) and anti-inflammatory interleukin 4 (IL-4) using a supramolecular approach. The regenerative capacity of IL-4/hep, hep-only, and bare grafts is investigated as interposition graft in the rat abdominal aorta, with follow-up at key timepoints in the healing cascade (1, 3, 7 days, and 3 months). Routine analyses are augmented with Raman microspectroscopy, in order to acquire the local molecular fingerprints of the resorbing scaffold and developing tissue. Thrombosis is found not to be a confounding factor in any of the groups. Hep-only-functionalized grafts resulted in adverse tissue remodeling, with cases of local intimal hyperplasia. This is negated with the addition of IL-4, which promoted M2 macrophage polarization and more mature neotissue formation. This study shows that with bioactive functionalization, the early inflammatory response can be modulated and affect the composition of neotissue. Nevertheless, variability between graft outcomes is observed within each group, warranting further evaluation in light of clinical translation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。