Diffusion of small molecule drugs is affected by surface interactions and crowder proteins

小分子药物的扩散受到表面相互作用和聚集蛋白的影响

阅读:6
作者:Debabrata Dey, Ariane Nunes-Alves, Rebecca C Wade, Gideon Schreiber

Abstract

Crowded environments are known to affect the diffusion of macromolecules, but their effects on the diffusion of small molecules are largely uncharacterized. We investigate how three protein crowders, bovine serum albumin (BSA), hen egg-white lysozyme, and myoglobin, influence the diffusion rates and interactions of four small molecules: fluorescein, and three drugs, doxorubicin, glycogen synthase kinase-3 inhibitor SB216763, and quinacrine. Using Line-FRAP measurements, Brownian dynamics simulations, and molecular docking, we find that the diffusion rates of the small molecules are highly affected by self-aggregation, interactions with the proteins, and surface adsorption. The diffusion of fluorescein is decreased because of its interactions with the protein crowders and their surface adsorption. Protein crowders increase the diffusion rates of doxorubicin and SB216763 by reducing surface interactions and self-aggregation, respectively. Quinacrine diffusion was not affected by protein crowders. The mechanistic insights gained here may assist in optimization of compounds for higher mobility in complex macromolecular environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。