Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells

迷迭香酸诱导三阴性乳腺癌细胞凋亡和细胞周期停滞

阅读:4
作者:Samia S Messeha, Najla O Zarmouh, Abrar Asiri, Karam F A Soliman

Abstract

Rosmarinic acid (RA) is a polyphenolic compound with various pharmacological properties, including, anti-inflammatory, immunomodulatory, and neuroprotective, as well as having antioxidant and anticancer activities. This study evaluated the effects and mechanisms of RA in two racially different triple-negative breast cancer (TNBC) cell lines. Results obtained show that RA significantly caused cytotoxic and antiproliferative effects in both cell lines in a dose- and time-dependent manner. Remarkably, RA induced cell cycle arrest-related apoptosis and altered the expression of many apoptosis-involved genes differently. In MDA-MB-231 cells, RA arrested the cells in the G0/G1 phase. In contrast, the data suggest that RA causes S-phase arrest in MDA-MB-468 cells, leading to a 2-fold increase in the apoptotic effect compared to MDA-MB-231 cells. Further, in MDA-MB-231 cells, RA significantly upregulated the mRNA expression of three genes: harakiri (HRK), tumor necrosis factor receptor superfamily 25 (TNFRSF25), and BCL-2 interacting protein 3 (BNIP3). In contrast, in the MDA-MB-468 cell line, the compound induced a significant transcription activation in three genes, including TNF, growth arrest and DNA damage-inducible 45 alpha (GADD45A), and BNIP3. Furthermore, RA repressed the expression of TNF receptor superfamily 11B (TNFRSF11B) in MDA-MB-231 cells in comparison to the ligand TNF superfamily member 10 (TNFSF10) and baculoviral IAP repeat-containing 5 (BIRC5) in MDA-MB-468 cells. In conclusion, the data suggest that the polyphenol RA may have a potential role in TNBC therapies, particularly in MDA-MB-468 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。