Abstract
The presence of microcystins (MCs) in waterbodies requires a simple and reliable monitoring technique to characterize better their spatiotemporal distribution and ecological risks. An organic-diffusive gradients in thin films (o-DGT) passive sampler based on polyacrylamide diffusive gel and hydrophilic-lipophilic balance (HLB) binding gel was developed for MCs in water. The mass accumulation of three MCs (MC-LR, -RR, and -YR) was linear over 10 days (R2 ≥ 0.98). Sampling rates (2.68-3.22 mL d-1) and diffusion coefficients (0.90-1.08 × 10-6 cm2 s-1) of three MCs were obtained at 20 °C. Two different passive samplers, o-DGT and the Solid Phase Adsorption Toxin Tracking device (SPATT), were co-deployed to estimate MC levels at three lakes in California, USA. Measured total MC concentrations were up to 10.9 μg L-1, with MC-LR the primary variant at a measured maximum concentration of 2.74 μg L-1. Time-weighted average MC concentrations by o-DGT were lower than grab water samples, probably because grab sampling measures both dissolved and particulate phases (i.e., MCs in cyanobacteria). Passive water samplers by design can only measure dissolved-phase MCs, which are considerably less during the cyanobacteria-laden periods observed. Both o-DGT and grab samples gave comparable results for three MC variants at low levels of MCs, e.g., <0.1 μg L-1. o-DGT showed a higher correlation with grab sampling than SPATT did. This study demonstrates that o-DGT can be effectively used for monitoring and evaluation of dissolved MCs in waters.
