Decreased GZMB, NRP1, ITPR1, and SERPINB9 Transcripts Lead to Reduced Regulatory T Cells Suppressive Capacity in Generalized Vitiligo Patients

GZMB、NRP1、ITPR1 和 SERPINB9 转录本减少导致全身性白癜风患者的调节性 T 细胞抑制能力下降

阅读:5
作者:Prashant S Giri, Ankit H Bharti, Mitesh Dwivedi

Abstract

Generalized vitiligo (GV) is an autoimmune skin disease characterized by bilateral white patches over the entire body. Regulatory T cells (Tregs) maintain peripheral tolerance; however, they are found to be reduced in numbers and function in vitiligo patients. The exact mechanism for reduced Treg suppressive capacity is unknown. Therefore, we aimed to assess transcript levels of Tregs-associated immunosuppressive genes (GZMB, NRP1, PDCD1, FASLG, and TNFRS18), regulatory molecules of Tregs suppressive function (SERPINB9, ITPR1, and UBASH3A), and Treg-associated transcription factors (GATA2, GATA3, RUNX1, STAT3, and STAT5) in 52 GV patients and 48 controls by real-time PCR (qPCR). We found significantly reduced GZMB, NRP1, SERPINB9, and ITPR1 transcripts in GV Tregs compared to controls (p = 0.03, p = 0.023, p = 0.0045, and p < 0.0001, respectively). There were 0.44-, 0.45-, 0.32-, and 0.54-fold decrease in GZMB, NRP1, SERPINB9, and ITPR1 transcripts in GV Tregs. Additionally, disease activity and severity-based analyses revealed significantly decreased GZMB (p = 0.019 and 0.034), SERPINB9 (p = 0.031 and p = 0.035), and ITPR1 (p = 0.0003 and p = 0.034) transcripts in active vitiligo and severe GV patients' Tregs. Interestingly, we found a positive correlation for ITPR1 with GZMB (r = 0.45, p = 0.0009) and SERPINB9 (r = 0.52, p = 0.001) transcripts in GV Tregs. Moreover, we found positive correlation for percentage Treg mediated suppression of CD4+ and CD8+T cells with ITPR1 (r = 0.54; r = 0.49), GZMB (r = 0.61; r = 0.58), NRP1 (r = 0.55; r = 0.52), and SERPINB9 (r = 0.56; r = 0.48) in GV Tregs. Further, calcium treatment of Tregs resulted into significantly increased ITPR1, SERPINB9, and GZMB transcripts in GV Tregs (p = 0.023, p = 0.0345, p = 0.02). Overall, our results for the first time revealed the crucial role of GZMB, NRP1, SERPINB9, and ITPR1 transcripts in decreased Treg suppressive capacity leading to GV pathogenesis, progression, and severity. In addition, our study highlighted that ITPR1 might be linked with decreased GZMB and NRP1 expression in GV Tregs. Moreover, our study for the first time suggest that increased SERPINB9 transcripts may lead to endogenous granzyme B-mediated Tregs apoptosis, and calcium treatment of Tregs may improve the Treg suppressive capacity. These findings may further aid in development of Treg-based therapeutics for GV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。