The intrinsically disordered region of eIF5B stimulates IRES usage and nucleates biological granule formation

eIF5B 的内在无序区域刺激 IRES 的使用并成核生物颗粒的形成

阅读:5
作者:Meghan T Harris, Michael T Marr 2nd

Abstract

Cells activate stress response pathways to survive adverse conditions. Such responses involve the inhibition of global cap-dependent translation. This inhibition is a block that essential transcripts must escape via alternative methods of translation initiation, e.g., an internal ribosome entry site (IRES). IRESs have distinct structures and generally require a limited repertoire of translation factors. Cellular IRESs have been identified in many critical cellular stress response transcripts. We previously identified cellular IRESs in the murine insulin receptor (Insr) and insulin-like growth factor 1 receptor (Igf1r) transcripts and demonstrated their resistance to eukaryotic initiation factor 4F (eIF4F) inhibition. Here, we find that eIF5B preferentially promotes Insr, Igf1r, and hepatitis C virus IRES activity through a non-canonical mechanism that requires its highly charged and disordered N terminus. We find that the N-terminal region of eIF5B can drive cytoplasmic granule formation. This eIF5B granule is triggered by cellular stress and is sufficient to specifically promote IRES activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。