Targeting Aspergillus allergen oryzin with a chemical probe at atomic precision

使用原子精度的化学探针靶向曲霉菌过敏原米曲霉

阅读:5
作者:Olivia N Pattelli, Dinh Dinh Ly Diec, Wanting Guo, Silvia Russi, Daniel Fernandez

Abstract

We report the molecular basis of Aspergillus fumigatus oryzin, allergen Asp f 13, or alkaline proteinase ALP1, containing the sequence motif His-Asp-Ser of the subtilisin family, structure, and function at atomic detail. Given the resolution of the data (1.06 Å), we use fragment molecular replacement with ideal polyalanine α-helices to determine the first crystal structure of oryzin. We probe the catalytic serine through formation of an irreversible bond to a small molecule compound, specifically labeling it, describing the amino acid residues performing the catalytic function. Defined by a self-processed pro-peptide, the active site architecture shapes up pocket-like subsites that bind to and unveil the S1'-S4' substrate binding preferences. We use molecular modeling to dock a model of the pro-peptide in the S1-S4 region and to dock collagen along the active site cleft. Opposite to the face harboring the catalytic serine, the enzyme binds to a calcium ion in a binding site created by backbone flipping. We use thermal unfolding to show that this metal ion provides structural stability. With no known host inhibitor identified thus far, this structure may hasten the progress of developing new therapeutic agents for diseases caused by pathogenic fungi.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。