Radiolabelling of peptides with tetrazine ligation based on the inverse electron-demand Diels-Alder reaction: rapid, catalyst-free and mild conversion of 1,4-dihydropyridazines to pyridazines

基于逆电子需求狄尔斯-阿尔德反应的四嗪配位肽放射性标记:1,4-二氢吡嗪快速、无催化剂、温和转化为吡嗪

阅读:7
作者:Sofia Otaru, Tatu Martinmäki, Iida Kuurne, Andreas Paulus, Kerttuli Helariutta, Mirkka Sarparanta, Anu J Airaksinen

Abstract

Click chemistry reactions, such as the tetrazine ligation, based on the inverse-electron demand Diels-Alder (IEDDA), are chemoselective cycloaddition reactions widely used for chemical modifications and synthesis of biomolecule-based radiopharmaceuticals for positron emission tomography (PET). The reactions have potential also for pretargeted PET imaging. When used as a bioconjugation method in production of biomolecule-based radiopharmaceuticals, IEDDA-based tetrazine ligation has one significant drawback, namely the formation of a mixture comprising reduced metastable dihydropyridazines (DHPs) and oxidized cycloadducts. Conversion of the reduced DHPs to stable pyridazines requires oxidation, which is typically achieved by using oxidants or by photo-irradiated air-oxidation, both methods requiring added reagents or reaction times of several hours, not compatible with short-lived radionuclides. Here we report a mild, rapid, and catalyst-free conversion of the DHPs to pyridazines. In this study, a model peptide Tyr3-octreotide (TOC) was modified with polyethylene glycol (PEG) linkers and with trans-cyclooctenes (TCOs) for rapid IEDDA-mediated radiolabeling. Fluorine-18-labelled alkylammoniomethyltrifluoroborate ([18F]AmBF3) tetrazines were conjugated to the TCO-TOC analogs at room temperature for rapid synthesis of PET imaging agent candidates. The formed DHPs were successfully converted to the oxidized form, after heating the radiolabelled bioconjugates in aqueous solution (≥95% water) at 60 °C for a minimum of 10 minutes in the presence of air, resulting in one-pot back-to-back IEDDA reaction and DHP conversion. The water content of the reaction mixture was to be found critical for the coversion. Our finding offers a straightforward method for conversion of the metastable DHPs from the IEDDA-based tetrazine ligation to stable, oxidized pyridazines. The method is especially suitable for applications requiring rapid conversion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。