A novel pathogenic variant located just upstream of the C-terminal Ser423-X-Ser425 phosphorylation motif in SMAD3 causing Loeys-Dietz syndrome

SMAD3 中 C 末端 Ser423-X-Ser425 磷酸化基序上游的一种新型致病变异,可导致 Loeys-Dietz 综合征

阅读:7
作者:Satoshi Ishii, Takayuki Fujiwara, Hiroki Yagi, Norifumi Takeda, Masahiko Ando, Haruo Yamauchi, Ryo Inuzuka, Yuki Taniguchi, Masaru Hatano, Issei Komuro

Conclusions

Our results revealed the presence of TGF-β paradox in this case with the novel loss-of-function SMAD3 variant. The precise mechanism underlying the paradox is unknown, but further research is warranted to clarify the influence of the SMAD3 variant type and location on the LDS3 phenotype as well as the molecular mechanism leading to LDS3 aortopathy.

Methods

The proband was tested via clinical, genetic, and histological analyses. In vitro analysis was performed for pathogenic evaluation.

Objective

Loeys-Dietz syndrome (LDS) is a heritable disorder of connective tissue closely related to Marfan syndrome (MFS). LDS is caused by loss-of-function variants of genes that encode components of transforming growth factor-β (TGF-β) signaling; nevertheless, LDS type 1/2 caused by TGFBR1/2 pathogenic variants is frequently found to have paradoxical increases in TGF-β signaling in the aneurysmal aortic wall. Here, we present a Japanese LDS family having a novel SMAD3 variant.

Results

The novel heterozygous missense variant of SMAD3 [c.1262G>A, p.(Cys421Tyr)], located just upstream of the C-terminal Ser423-X-Ser425 phosphorylation motif, was found in this instance of LDS type 3. This variant led to reduced phospho-SMAD3 (Ser423/Ser425) levels and transcription activity in vitro; however, a paradoxical upregulation of TGF-β signaling was evident in the aortic wall. Conclusions: Our results revealed the presence of TGF-β paradox in this case with the novel loss-of-function SMAD3 variant. The precise mechanism underlying the paradox is unknown, but further research is warranted to clarify the influence of the SMAD3 variant type and location on the LDS3 phenotype as well as the molecular mechanism leading to LDS3 aortopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。