Vimentin deficiency in macrophages induces increased oxidative stress and vascular inflammation but attenuates atherosclerosis in mice

巨噬细胞中的波形蛋白缺乏会导致氧化应激和血管炎症增加,但会减轻小鼠的动脉粥样硬化

阅读:13
作者:Liliana Håversen, Jeanna Perman Sundelin, Adil Mardinoglu, Mikael Rutberg, Marcus Ståhlman, Ulrika Wilhelmsson, Lillemor Mattsson Hultén, Milos Pekny, Per Fogelstrand, Jacob Fog Bentzon, Malin Levin, Jan Borén

Abstract

The aim was to clarify the role of vimentin, an intermediate filament protein abundantly expressed in activated macrophages and foam cells, in macrophages during atherogenesis. Global gene expression, lipid uptake, ROS, and inflammation were analyzed in bone-marrow derived macrophages from vimentin-deficient (Vim-/-) and wild-type (Vim+/+) mice. Atherosclerosis was induced in Ldlr-/- mice transplanted with Vim-/- and Vim+/+ bone marrow, and in Vim-/- and Vim+/+ mice injected with a PCSK9 gain-of-function virus. The mice were fed an atherogenic diet for 12-15 weeks. We observed impaired uptake of native LDL but increased uptake of oxLDL in Vim-/- macrophages. FACS analysis revealed increased surface expression of the scavenger receptor CD36 on Vim-/- macrophages. Vim-/- macrophages also displayed increased markers of oxidative stress, activity of the transcription factor NF-κB, secretion of proinflammatory cytokines and GLUT1-mediated glucose uptake. Vim-/- mice displayed decreased atherogenesis despite increased vascular inflammation and increased CD36 expression on macrophages in two mouse models of atherosclerosis. We demonstrate that vimentin has a strong suppressive effect on oxidative stress and that Vim-/- mice display increased vascular inflammation with increased CD36 expression on macrophages despite decreased subendothelial lipid accumulation. Thus, vimentin has a key role in regulating inflammation in macrophages during atherogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。