Inhibition of circular RNA CDR1as increases chemosensitivity of 5-FU-resistant BC cells through up-regulating miR-7

抑制环状 RNA CDR1as 可通过上调 miR-7 增加 5-FU 耐药 BC 细胞的化学敏感性

阅读:6
作者:Wei Yang, Juan Gu, Xuedong Wang, Yueping Wang, Mei Feng, Daoping Zhou, Jianmin Guo, Ming Zhou

Abstract

This study aims to explore the mechanism of Circular RNA CDR1as implicating in regulating 5-fluorouracil (5-FU) chemosensitivity in breast cancer (BC) by competitively inhibiting miR-7 to regulate CCNE1. Expressions of CDR1as and miR-7 in 5-FU-resistant BC cells were determined by RT-PCR. CCK-8, colony formation assay and flow cytometry were applied to measure half maximal inhibitory concentration (IC50), 5-Fu chemosensitivity and cell apoptosis. Western blot was used to detect the expressions of apoptosis-related factors. CDR1as was elevated while miR-7 was inhibited in 5-FU-resistant BC cells. Cells transfected with si-CDR1as or miR-7 mimic had decreased IC50 and colony formation rate, increased expressions of Bax/Bcl2 and cleaved-Caspase-3/Caspase-3, indicating inhibition of CDR1as and overexpression of miR-7 enhances the chemosensitity of 5-FU-resistant BC cells. Targetscan software indicates a binding site of CDR1as and miR-7 and that CCNE1 is a target gene of miR-7. miR-7 can gather CDR1as in BC cells and can inhibit CCNE1. In comparison to si-CDR1as group, CCNE1 was increased and chemosensitivity to 5-Fu was suppressed in si-CDR1as + miR-7 inhibitor group. When compared with miR-7 mimic group, CDR1as + miR-7 mimic group had increased CCNE1 and decreased chemosensitivity to 5-Fu. Nude mouse model of BC demonstrated that the growth of xenotransplanted tumour in si-CDR1as + miR-7 inhibitor group was faster than that in si-CDR1as group. The tumour growth in CDR1as + miR-7 mimic group was faster than that in miR-7 mimic group. CDR1as may regulate chemosensitivity of 5-FU-resistant BC cells by inhibiting miR-7 to regulate CCNE1.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。