Soluble β-amyloid impaired the GABA inhibition by mediating KCC2 in early APP/PS1 mice

可溶性 β-淀粉样蛋白通过介导 KCC2 削弱早期 APP/PS1 小鼠的 GABA 抑制作用

阅读:6
作者:Yuan Zhou, Yujie Cheng, Yong Li, Jiyao Ma, Zhihan Wu, Yuenan Chen, Jinyu Mei, Ming Chen

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder, which has become the leading cause of dementia cases globally. Synaptic failure is an early pathological feature of AD. However, the cause of synaptic failure in AD, especially the GABAergic synaptic activity remains unclear. Extensive evidence indicates that the presence of soluble amyloid-β is an early pathological feature in AD, which triggers synaptic dysfunction and cognitive decline. Our recent study explored the relation of GABAergic transmission and soluble Aβ in early APP/PS1 mice. Firstly, we found soluble Aβ42 levels were significantly increased in serum, hippocampus and prefrontal cortex in 3-4 months APP/PS1 mice, which was much earlier than Aβ plagues formation. In addition, we found TNF-α and BDNF expression levels were increased, while KCC2 and GABAAR expression were decreased in 3-4 months APP/PS1 hippocampus. When we treated 3-4 months APP/PS1 mice with a potent γ-secretase inhibitor, LY411575, which can reduce the soluble Aβ42 levels, the TNF-α and BDNF protein levels were decreased, while KCC2 and GABAAR levels were increased. In conclusion, our study suggested soluble Aβ may impaired the GABA inhibition by mediating KCC2 levels in early APP/PS1 mice. KCC2 may be served as a potential biomarker for AD.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。