Harpagophytum procumbens Inhibits Iron Overload-Induced Oxidative Stress through Activation of Nrf2 Signaling in a Rat Model of Lumbar Spinal Stenosis

在腰椎管狭窄大鼠模型中,Harpagophytum procumbens 通过激活 Nrf2 信号抑制铁过载引起的氧化应激

阅读:6
作者:Jin Young Hong, Hyunseong Kim, Junseon Lee, Wan-Jin Jeon, Yoon Jae Lee, In-Hyuk Ha

Abstract

Lumbar spinal stenosis (LSS) is a common degenerative spinal condition in older individuals that causes impaired walking and other disabilities due to severe lower back and leg pain. Ligamentum flavum hypertrophy is a major LSS cause that may result from oxidative stress caused by degenerative cascades, including imbalanced iron homeostasis that leads to excessive reactive oxygen species production. We investigated the effects of Harpagophytum procumbens (HP) on iron-induced oxidative stress associated with LSS pathophysiology. Primary spinal cord neuron cultures were incubated in FeSO4-containing medium, followed by addition of 50, 100, or 200 μg/mL HP. Cell viability was assessed by CCK-8 and live/dead cell assays and by propidium iodide-live imaging. In an in vivo rat model of LSS, HP were administered at 100, 200, and 400 mg/kg, and disease progression was monitored for up to 3 weeks. We investigated the in vitro and in vivo effects of HP on iron-induced neurotoxicity by immunochemistry, real-time PCR, and flow cytometry. HP exerted neuroprotective effects and enhanced neurite outgrowths of iron-injured rat primary spinal cord neurons in vitro. HP treatment significantly reduced necrotic cell death and improved cells' antioxidative capacity via the NRF2 signaling pathway in iron-treated neurons. At 1 week after HP administration in LSS rats, the inflammatory response and oxidative stress markers were substantially reduced through regulation of excess iron accumulation. Iron that accumulated in the spinal cord underneath the implanted silicone was also regulated by HP administration via NRF2 signaling pathway activation. HP-treated LSS rats showed gradually reduced mechanical allodynia and amelioration of impaired behavior for 3 weeks. We demonstrated that HP administration can maintain iron homeostasis within neurons via activation of NRF2 signaling and can consequently facilitate functional recovery by regulating iron-induced oxidative stress. This fundamentally new strategy holds promise for LSS treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。