Inhibition of nucleolar transcription as a trigger for neuronal apoptosis

抑制核仁转录引发神经元凋亡

阅读:7
作者:Katarzyna Kalita, Denys Makonchuk, Cynthia Gomes, Jing-Juan Zheng, Michal Hetman

Abstract

In post-mitotic neurons, the mechanisms of the apoptotic checkpoint that is activated by DNA damage remain unclear. Here we show that in cultured cortical neurons, the DNA damaging agent camptothecin (CPT) reduced transcription of rRNA and disrupted nucleolar staining for B23/nucleophosmin suggesting DNA damage-induced nucleolar stress. Although CPT activated the pro-apoptotic protein p53, the CPT-induced nucleolar stress was unaffected by p53 inhibition. In addition, brain-derived neurotrophic factor-mediated protection from CPT-induced apoptosis prevented neither nucleolar stress nor p53 activation. Therefore, inhibition of rRNA transcription might be upstream of the pro-apoptotic p53 activity. Indeed, short hairpin RNA-mediated inhibition of a RNA-Polymerase-I co-factor, transcription initiation factor IA, attenuated rRNA transcription causing nucleolar stress and p53-dependent neuronal apoptosis. The protein synthesis inhibitor cycloheximide blocked apoptosis that was induced by over-expressed shTIF-IA or active form of p53. Also, the general transcription inhibitor actinomycin D triggered nucleolar stress and activated p53. However, it did not induce apoptosis except at the low concentration of 0.05 microg/mL with stronger inhibitory activity against nucleolar than extranucleolar transcription. Hence, nucleolar stress-activated apoptosis requires extranucleolar transcription. This study identifies the nucleoli of post-mitotic neurons as sensors of DNA damage coupling reduced rRNA transcription to p53-mediated apoptosis that requires de novo expression of protein-coding genes. Thus, rDNA selectivity of DNA damage may determine its ability to induce neuronal apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。