CRISPR/Cas9-Mediated Generation of COL7A1-Deficient Keratinocyte Model of Recessive Dystrophic Epidermolysis Bullosa

CRISPR/Cas9 介导的隐性营养不良性大疱性表皮松解症 COL7A1 缺陷角质形成细胞模型的生成

阅读:6
作者:Farzad Alipour, Mana Ahmadraji, Elham Yektadoost, Parvaneh Mohammadi, Hossein Baharvand, Mohsen Basiri

Conclusion

We reported the first isogenic immortalized COL7A1-deficient keratinocyte lines that provide a useful cell culture model to investigate aspects of RDEB biology and potential therapeutic options.

Methods

In this experimental study, we used transient transfection to express COL7A1 -targeting guide RNA (gRNA) and Cas9 in HEK001 immortalized keratinocyte cell line followed by enrichment with fluorescent-activated cell sorting (FACS) via GFP expressing cells (GFP+ HEK001). Homogenous single-cell clones were then isolated, genotyped, and evaluated for type VII collagen expression. We performed a scratch assay to confirm the functional effect of COL7A1 knockout.

Objective

Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic skin fragility and ultimately lethal blistering disease caused by mutations in the COL7A1 gene which is responsible for coding type VII collagen. Investigating the pathological mechanisms and novel candidate therapies for RDEB could be fostered by new cellular models. The aim of this study was to employ CRISPR/Cas9 technology in the development of immortalized COL7A1-deficient keratinocyte cell lines intended for application as a cellular model for RDEB in ex vivo studies. Materials and

Results

We achieved 46.1% (P<0.001) efficiency of in/del induction in the enriched transfected cell population. Except for 4% of single nucleotide insertions, the remaining in/dels were deletions of different sizes. Out of nine single expanded clones, two homozygous and two heterozygous COL7A1-deficient cell lines were obtained with defined mutation sequences. No off-target effect was detected in the knockout cell lines. Immunostaining and western blot analysis showed lack of type VII collagen (COL7A1) protein expression in these cell lines. We also showed that COL7A1-deficient cells had higher motility compared to their wild-type counterparts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。